

Filling in the Data Holes at Frying Pan Shoals–An Update on BOEM's Ecosystem Dynamics Study

Jen Bucatari and Doug Piatkowski – Marine Minerals Program

BOEM's Mission Responsibilities

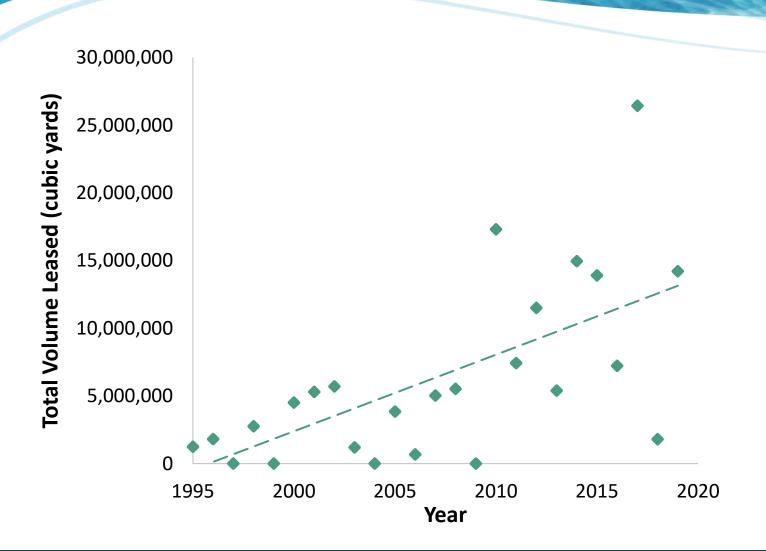
- As of June 2022: 64 total leases (8 active)
- Total Vol Allocated ~180 MCY*
- Avg lease area ~1000 acres
- Avg lease vol ~2.8 MCY*

BOEM Marine Minerals Program

MISSION

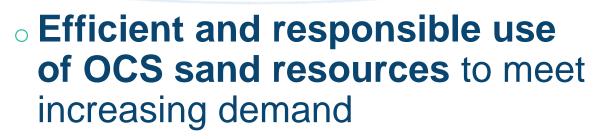
Facilitate access to and manage the Nation's Outer Continental Shelf (OCS) non-energy marine minerals through environmentally responsible stewardship, prudent exploration and leasing activities, coordination with government partners, stakeholder engagement, and mission-focused research to improve decision-making and risk management.

Outer Continental Shelf (OCS) sand resources


- Replenish beaches
- Fortify barrier islands and shorelines
- Restore wetlands

• Critical Minerals

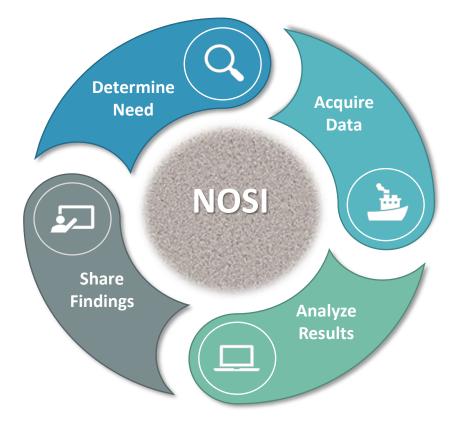
Increasing Demand for OCS Sand


BOEM Bureau of Ocean Energy Management

- Storm activity and coastal erosion increasing
- Diminishing resources in state waters
- Adds to nearshore sediment budget

Facing the Future

 Manage current and future resources with the National Offshore Sand Inventory


- Coastal Resilience
- Emergency Preparedness

o Partnership and Collaboration

National Offshore Sand Inventory (NOSI)

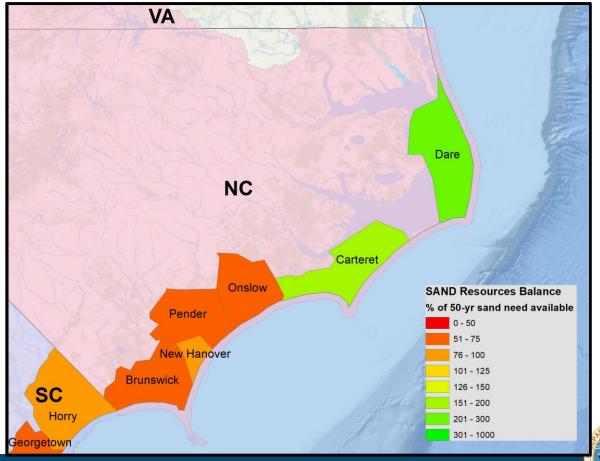
Provides data and analysis for:

Long-term coastal resilience and adaptation
Offshore environmental and resource stewardship

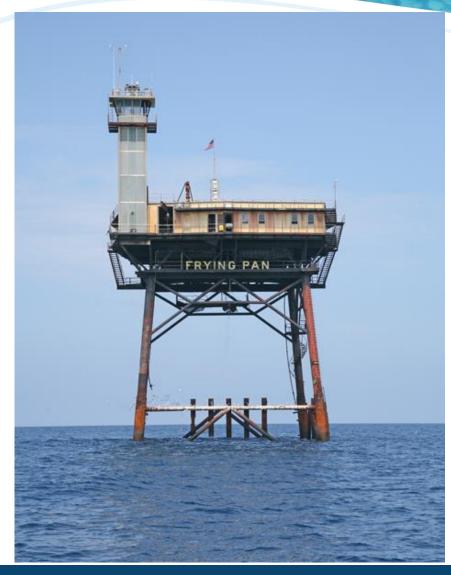
Comprised of four major components

- Supply and Demand
- Resource Evaluation
- Borrow Area Optimization
- Risk Mitigation

Supply and Demand - SACS SAND



SOUTH ATLANTIC COASTAL STUDY (SACS)


RESULTS

- Significant 50-year sand needs deficits in SE NC
 - Onslow: 60% (of 50-yr needs)
 - Pender: 72%
 - New Hanover: 78%
 - Brunswick: 70%

Supply and Demand – FPS Study Importance

- Erosion continues and demand for beach compatible sand resources is increasing
- No significant sand resources identified in recent G&G efforts other than FPS
- Multiple projects considering state and federal sand resources at FPS
- FPS is a unique and highly productive shoal system
- Data gaps and dredging concerns currently constrain future use of FPS
- BOEM identified the need for proactive research at FPS to inform pending decisions

FPS Importance - Habitat Value

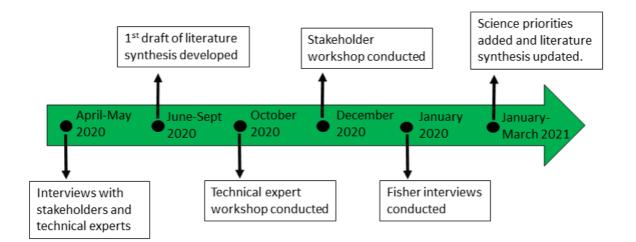
- FPS is currently designated by the National Marine Fisheries Service (NMFS) as an Essential Fish Habitat (EFH) and a Habitat Area of Particular Concern (HAPC)
- Dredging is considered a potential threat to EFH and HAPCs
- NMFS has expressed concern that long-term and repeated dredging operations could impact the habitat value that supports several important commercial and recreational fisheries
- Focus of current field work to improve borrow area management and mitigation measures

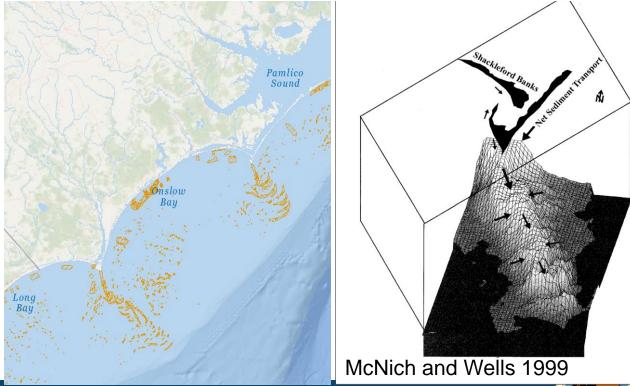
Risk Mitigation

Frying Pan Shoals Ecosystem Dynamics

1) Workshops:

- Summarized the physical and biological characteristics
- Potential dredging implications/concerns
- Identified data gaps and research needs


2) Field Study:


Bureau of

Ocean Energy Management

Н(

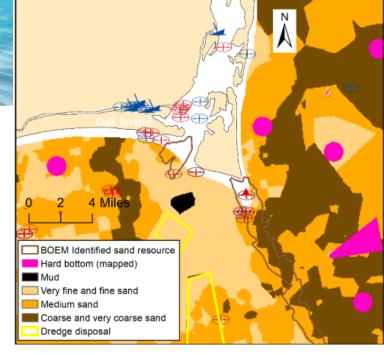
- Examine habitat and spatial distribution of key species
- Determine the baseline variability of benthic community
- Examine sediment transport pathways and rates
- Influence of the Cape Fear River

Workshop Conclusions

Literature review - BOEM_2021-028.pdf

Gathered information and concerns from stakeholders

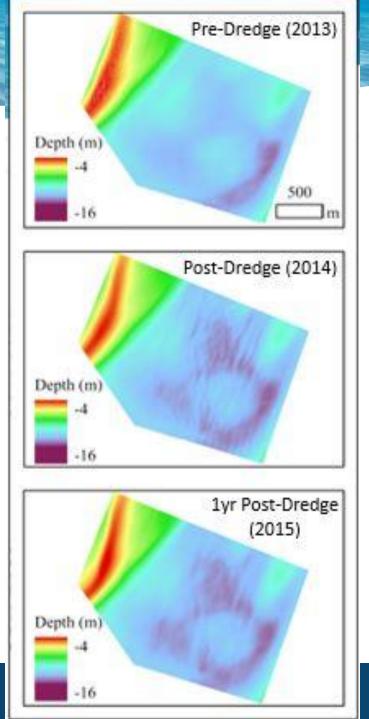
- Identified major knowledge gaps and research priorities
 - Examples:


Bureau of

Ocean Energy Management

ВC

- influence of Cape Fear River plume on FPS
- post-dredging sediment recharge and infilling rates
- identify areas that are important for estuary-ocean connectivity for larvae and anadromous fish
- Identified potential mitigation measures; summarized measures previously proposed

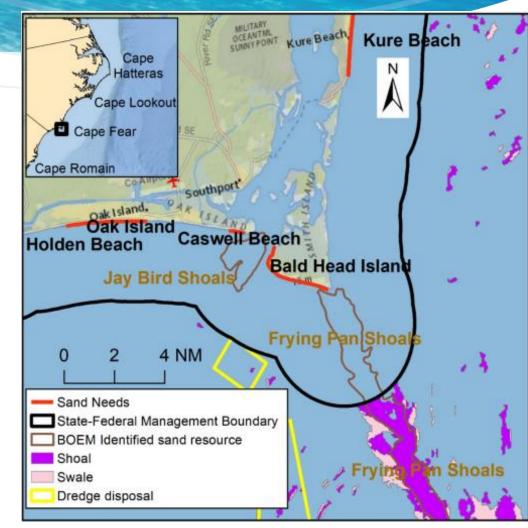

Utilized the data gaps and research priorities to develop the statement of work

Field Study Goals

Address knowledge and data gaps

- Examine spatial and temporal (seasonalinterannual) variability
- Collect baseline data
- Provide actionable data and modeling for future examination of impacts from potential dredging on FPS

Study Team


• Project team is comprised of a multidisciplinary team from the University of North Carolina Wilmington (UNCW) Center for **Marine Science** (CMS)

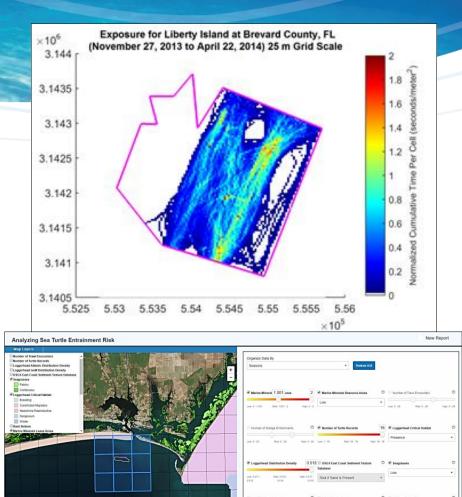
Personnel	Role
Dr. Joseph Long	Hydrodynamic and morphological modeling, assist with physical
	oceanographic observations, project management and coordination
Dr. Fred Scharf	Fish sampling, acoustic tagging, life stage analysis, stable isotope
	analysis, project management and coordination
Dr. Christian Briseño-Avena	Zooplankton net tows, emergence trap deployment/recovery, LISST-
	Holo2 surveys and data analysis.
Dr. Martin Posey	Benthic sampling, analysis of benthic data, blue crab and shrimp sample
	analysis
Dr. Sutara Suanda	Offshore physical oceanographic mooring instrumentation and data
	processing. Shipboard physical surveys and numerical modeling.
Dr. Derek Grimes	Coordinate design, construct, and deployment of physical
	oceanographic moorings and instrumentation. Physical oceanographic
	data processing, model development and analysis
Dr. Shannon Klotsko	Geophysical mapping and analysis. Assist with stratigraphic coring and
	sediment sampling and analysis.
Dr. Andrea Hawkes	Stratigraphic coring and seasonal sediment sampling and analysis (grain
	size, mineralogy, and pollution, radiocarbon, and OSL dating
	techniques). Assist with geophysical mapping.
Dr. Lynn Leonard	Research and operations coordination at the CMS; CORMP data
	management; assessment of sediment transport pathways
Troy Alphin	Benthic sampling, identifications of benthic organisms, analysis of
	benthic data
Chris LaClair	Mooring design, ship operations, diving, instrument deployment/recovery
David Wells	
Landis Bullock	

Sampling

- UNCW and BOEM work together to develop sampling plan (first 6 mo)
- Data collection to begin after approved sampling plan
- Will extend for at least 2 years
- Coordination and engagement with regional stakeholders will continue
- Data collection will span both state and federal waters
- If dredging activities occur will consider modification of sampling plan to areas of interest



Sampling


- Proposed sampling methods:
 - Long-line (large adult fishes)
 - Sidescan sonar, chirp subbottom profiler
 - Grab samples and cores
 - Fixed instrument arrays for to sample water column currents, waves, acoustic and optical properties
 - Net tows (ichthyoplankton, zooplankton)
 - LISST-Holo2 in-situ imaging system

- ADCPs
- Wave buoys
- Drifters
- Trawls
- Benthic grabs
- Isotopes
- Acoustic tags
- Modeling

- Final report at the end of the 4-year period of performance
- The modeling component is expected to provide information about sediment transport rates and pathways to different parts of the shoal
- All the data will be utilized for a potential impacts analysis for the use of FPS as a borrow source
- The data will be useful for determining borrow area optimization and refining potential minimization and mitigation strategies
- Deliverables includes recommendations for postdredging monitoring methods

Conclusions

- Risk mitigation is a strategy to prepare for and lessen effects of resource use
- The outcome of risk mitigation feeds into borrow area optimization
- Studies examining impacts are needed to:
 - Develop mitigation strategies
 - Determine environmental baseline
 - Analyze potential impacts
- Advanced planning and research is critical to meet the growing demand for coastal resilience projects

BOEM.gov f У

Doug Piatkowski; <u>douglas.Piatkowski@boem.gov</u>; (703-269-8051) Jennifer Bucatari; <u>Jennifer.Bucatari@boem.gov</u>; (703-300-7848)