

Advanced Technology for Planning, Design, and Monitoring of Coastal Resiliency Projects

Matt Campbell, PhD, PE matt@natrx.io Tad Schwendler tad@natrx.io

Natrx technology promotes a harmonious balance between the natural and built worlds.

Rethinking What's Possible

Time: Year 0

Harness the power of natural systems Create harmony with ecology Minimize material use Expect natural, dynamic performance

The Natrx Platform

Address: Dry Forming[™] advanced manufacturing and deployment

Remote risk assessment, analysis, planning, and design

Assess:

Appraise: Ongoing monitoring, measurement, and reporting of project performance and value creation

Natrx Assess: Geospatial Analysis Technology

1 m resolution

High res satellite Large features Landscape shifts

.15 m resolution

High res aerial photography Individual vegetation Specifics of Infrastructure

.3 m resolution

High res satellite and aerial photography Waterways Shoreline change Vegetation delineation

.03 m resolution

Drone photography Individual vegetation details Infrastructure details

Adapted from: www.focalflight.com/capabilities/image-resolution/

Natrx Assess: Geospatial Analysis Technology

Classification and Trend Analysis

NATCX 9

Advanced Technology for Data Analysis

Image Analysis

Prediction

Natrx Assess: Design Optimization

Wave Rose

Natrx Assess: Design Optimization

Wave Climate

Natrx Assess: Design Optimization

Wave Climate

Linear Infrastructure Monitoring

Linear Infrastructure Monitoring

2022-09-01 2022-10-01 2022-11-01 2022-12-01 2023-01-01 2023-02-01 2023-03-01 2023-04-01 2023-05-01 2023-06-01 2023-07-01 2023-08-01 2023-09-01

Coastal Dynamics Monitoring

Mobjack Bay Project Planning Analysis

Section Groupings

Area

Mobjack Bay Project: Land Loss Analysis

Mobjack Bay Project: Wave Model

- Wave models derived from proximate NOAA wind stations.
- Estimate wind and fetch driven stress on lands in the project area.
- Example (right) shows intensity, frequency, and direction.

Mobjack Bay Project: Guinea Marsh Analysis

Advanced Technology for Data Collection

Mobjack Bay Project: Slope Profile

Mobjack Bay Project: Coastal Protection Typologies

Shoreline Profile	Total length (m)	Number of ExoForms	Total benthic surface Area (m ²)
Low	1,374	1,245	2,739
Med	4,170	7,575	52,268
Stacked	4,627	12,608	64,301
Grand Total	10,171	21,428	119,307

Advanced Technology for Design Analysis

NOTOX 24

Transmission coefficient (K_t) from CFD (blue) vs. normalized crest height, compared against Van Der Meer plot for short crested breakwaters

Advanced Technology for Coastal Structures

Project Specific Design

Reduced Carbon Footprint

Resilient to Storms

Safe & Efficient Install

Habitat Positive

NATUX

ADAPTIVE INFRASTRUCTURE

Matt Campbell, PhD, PE matt@natrx.io

Tad Schwendler tad@natrx.io