Green-Gray Alternative to Stabilize Lola Road in Cedar Island, North Carolina

Izzy Aftanis, Aidan Duffy, Paul Hurley, Grace Lueders, Carter Stainback

Agenda

Problem Area of Interest

Background

Solution Design

Cost Estimates

Problem Area of Interest

- Lola Road
- Increased Erosion in Area
- Road Importance
- Current Revetment

Problem Area of Interest

Google Earth

Previous Engineering

Revetment

- Deteriorating
- o Likely minimal design
- o Between 250 and 265 ft
- o NCDOT Class 2 Rip Rap

Breakwater

- Designed by Quibble and Associates
- o Funded by TNC
- o Effective in a matching wave climate
- Four 90 ft sections of marl stone
- Visual oyster growth
- o Accretion

Erosion

- Consistent erosion
- About 2.5-3 ft/year

Background Storm & Floods

NOAA Historical Hurricane Tracks

High tide flooding from NOAA Sea level rise

Sea Level Rise

Tidal Range & Winds

- Mean Tidal Range
 - o Cedar Island 0.28-0.34 ft (NOAA, 8655151)
 - o Hatteras 0.47-0.65ft (NOAA, 8654467)

Hatteras Wind Rose with Speed Bins

Google Earth

Coastal Processes

- Flooding of lowlands
- Northwest to Southeast littoral drift
- Scarping

Christine Voss (UNC Institute of Marine Sciences)

Field Data Collection

Walking Surveys

NAVD88

[]N(

Design Objectives

- Road stabilization
- Dissipate wave energy
- Partner interests

HOW GREEN OR GRAY SHOULD YOUR SHORELINE SOLUTION BE?

GREEN - SOFTER TECHNIQUES

GRAY - HARDER TECHNIQUES

Living Shorelines

VEGETATION ONLY -Provides a buffer to upland areas and breaks small waves. Suitable for low wave energy environments.

EDGING -Added structure holds the toe of existing or vegetated slope in place. Suitable for most areas except high wave energy environments.

SILLS -Parallel to vegetated shoreline, reduces wave energy, and prevents erosion. Suitable for most areas except high wave energy environments.

BREAKWATER -(vegetation optional) - Offshore structures intended to break waves, reducing the force of wave action, and encourage sediment hardened shoreline accretion. Suitable for most areas.

Coastal Structures

REVETMENT -Lays over the slope of the shoreline

and protects it from erosion and waves. Suitable for sites with existing structures.

BULKHEAD -Vertical wall parallel to the shoreline intended to hold soil in place. Suitable for high energy settings and sites with existing hard shoreline structures.

Texas General Land Office

Revetment

Texas General Land Office

Revetment Repairs

- Advantages
- Design Considerations
- Modifications

Revetment Design Calculations

- Slope: 1V:1.15H
- Wave Height: 5.24 ft
- Median Stone Size: 1.28 ft

Revetment Modification

TABLE 1042-1 ACCEPTANCE CRITERIA FOR RIP RAP AND STONE FOR EROSION CONTROL				
Class Required Stone Sizes, inc			ies	
Class	Minimum	Midrange	Maximum	
А	2	4	6	
В	5	8	12	
1	5	10	17	
2	9	14	23	

• Our minimum D_{n50} of 1.28 ft (15 inches), allows us to fill holes with minimum class 2 of normal quarry stone

Vegetation

Texas General Land Office

Plant Compatibility

- pH range of 3.7 7.9
- Flooding tolerance
- USDA Hardiness Zone of 6-9
- Fine to coarse-grain size
- Salinity range of 0 35 ppt

 Cedar Island typical range is 15-20 ppt (USGS Water Data for the Nation)

> Site Averages from USFWS "Vegetation of Coastal Wetland Elevation Monitoring Sites on National Wildlife Refuges in the South Atlantic Geography"

CWEM Site	рН	OM%	PBS	Clay%	Silt%	Sand%
ACE Basin NWR - Grove Marsh/Edisto River	4.8	18	44	17	30	53
Alligator River NWR - Koehring Road Pocosin	3.6	70	21	3	21	77
Alligator River NWR - Long Shoal River	6.8	12	92	3	24	73
Blackbeard Island NWR - Blackbeard Creek	6.0	11	81	12	17	72
Cape Romain NWR - Horsehead Creek	3.2	11	17	22	28	50
Cape Romain NWR - Raccoon Key	3.4	11	18	14	38	48
Cedar Island NWR - Wet Marsh	5.8	65	75	4	17	79
Currituck NWR - Swan Island	5.5	21	65	3	5	93
Harris Neck NWR - Harris Neck Creek	5.7	39	72	14	18	68
Lower Suwannee NWR - Shired Creek	5.8	6	75	2	5	93

Vegetation Types

Spartina Alterniflora:

- Smooth cordgrass
- Thrives in regularly flooded area

Spartina Patens:

- Salt meadow cordgrass
- Thrives in irregularly flooded areas

Yaupon:

- Tolerant species
- Dense root system

Texas A&M-Master Gardener Program

Planting Approach

Spartina Alterniflora:

- Space about 1-2 inches apart
- Use staggered or triangular spacing
- Plant between April 1 and September 30
- Plant by hand using common garden tools

Spartina Patens:

- Space units 1-2 inches apart
- Use common garden hand tools
- Plant in late winter to early spring

Yaupon:

- Offset on 10-inch spacing
- Transplant in late winter or early spring

Maintenance

- Revisit the site after 90 days and then 180 days
- Look for dead patches, 25%-30% of plant failure
- Watch for weather
- 2 growing seasons = stability

Coastal Transplants

Oyster Castle Breakwaters

Texas General Land Office

Oyster Castle Breakwaters

- Dissipate wave energy
- Eco-friendly and sustainable
- Cost-effective
- Adaptable and flexible

Rutgers: Marine and Coastal Sciences

Oyster Castle Breakwater: Design Considerations

- Bathymetry
- Stability of offshore sediment
- Wave environment
- Oyster growth

Chesapeake Bay Journal

Oyster Castle Breakwater Design

W Coastal Engineering

Oyster Castle Breakwater Effectiveness

• Wave transmission coefficient

Wave Condition	50-year	25-year	Conditions Derived
	Storm	Storm	from RBR Data
% Energy Dissipated	52%	49%	17%-48%

Oyster Growth Zone

CROSS SECTION VIEW (NAVD88)

• Short-term protection

• Long-term protection

Lafyette Wetlands Partnership

Construction/Maintenance

Key Takeaways:

- 1. Low cost
- 2. Lightweight
- 3. Enhanced

Biodiversity

Fabricate Concrete Blocks

Place Oyster Breakwater

Seed Oyster Breakwater

Lafyette Wetlands Partnership

Phases of Construction

Phase 1	 Construction of oyster castle breakwaters Seed castles with oyster spat
Phase 2	Shoreline clean upRevetment repair
Phase 3	Planting of intertidal vegetationPlanting of upland vegetation
Phase 4	 Routine monitoring Maintenance

Cost Estimates

Vegetation			
Plants	Yaupon	\$4,800	
	Spartina Alterniflora	\$12,500	
	Spartina Patens	\$6,250	
		\$23,550	
	Site vists (\$885 per visit)	\$1,700	
	Watering (\$1,000 per visit)	\$2,000	
Maintenance	Weed Control (\$500 per visit)	\$1,000	
	Fencing/protection	\$750	
		\$5,450	
Potential Replant and Damages	Replanting yaupon	\$1,500	
	Replanting S.A.	\$3,800	
	Replanting S.P.	\$1,900	
		\$7,200	
	Total	\$36,200	

	Revetment
Size 2 Rip Rap	\$25,000
Equipment	\$6,000
Mobilization	\$5,000
Labor	\$24,000
Total	\$60,000

Oyster Breakwaters				
Materials	Cement Block Fabrication (1,728 total)	\$17,280		
	Geotextile Fabric (\$0.92 per sqft)	\$5,600		
	Oyster Bushel (8 needed)	\$900		
Labor	Oyster Breakwater Construction	\$8,700		
	Seeding	\$500		
	Monitoring (first 12 months)	\$2,200		
	Monitoring (Annual and Post Storm)	\$800		
	Mobilization	\$5,000		
	Total	\$41.000		

15% contingency = \$42,000

Cost Estimates

Total cost of \$180,000

Acknowledgements

Questions/Discussion

Permitting

Federal Regulation

- Nationwide Permit for Living Shorelines
- Section 404 Permit (Clean Water Act)

State Regulation

o CAMA Major Permit through NCDEQ

Carteret County Building Permit

Oyster/ Plant Growth Permits

Mobilization Site

Oyster Castle Breakwater Equations

Wave Transmission Formula by van der Meer and d'Angremond (1991) for Rock Armored Low-Crested, Submerged, and Reef Breakwaters

$$\begin{split} C_t &= \left(0.031 \, \frac{H_s}{D_{n50}} - 0.24\right) \frac{R_c}{D_{n50}} + b \\ & \text{maximum } C_t = 0.75 \text{ , minimum } C_t = 0.075 \quad \text{conventional structure} \\ & \text{maximum } C_t = 0.60 \text{ , minimum } C_t = 0.15 \quad \text{reef type structure} \\ \end{split} \\ \text{where} \\ b &= \begin{cases} -5.42 \, s_{op} + 0.0323 \, \frac{H_s}{D_{n50}} - 0.0017 \left(\frac{B}{D_{n50}}\right)^{1.84} + 0.51 \quad \text{conventional structure} \\ -2.6 \, s_{op} - 0.05 \, \frac{H_s}{D_{n50}} + 0.85 \quad \text{reef type structure} \\ \end{cases} \\ H_s &= \text{ significant wave height of incident waves} \\ D_{n50} &= \text{ median of nominal diameter of rocks for design conditions} \\ R_c &= \text{ freeboard, negative for submerged breakwater} \\ B &= \text{ width of the crest} \\ s_{op} &= \text{ deepwater wave steepness corresponding to peak period.} \end{cases}$$

 $E_{dissipated} = E_{incident} - E_{transmitted}$ where $E_{incident} = \frac{1}{8}\rho g H_s^2$ $E_{transmitted} = K_t(E_{incident})$

b

Oyster Castle Breakwater Equations

50-year Storm Wave Conditions

- $H_s = 5.28 ft, T_p = 5.1 s$
- $K_t = 0.476$
- $E_{dissipated} = 3669 ft lbf/ft^2$

25-year Storm Wave Conditions

- $H_s = 4.54 ft, T_p = 4.8 s$
- $K_t = 0.514$

•
$$E_{dissipated} = 2516 ft - lbf/ft^2$$

Maximum Recorded Wave Conditions

- $H_s = 0.3 ft, T_p = 2.29 s$
- $K_t = 0.523$

•
$$E_{dissipated} = 11 ft - lbf/ft^2$$

Minimum Recorded Wave Conditions

- $H_s = 0.011 ft, T_p = 1.81 s$
- $K_t = 0.826$
- $E_{dissipated} = 0.005 ft lbf/ft^2$

Calculations

Median Stone Size Formula				
Van der Meer (1988)				
Calculating Surf Stability Paramete	er ξ _m	wave steepness	Δ	
wave stepness (no dimensions) s _{om}	0.401732179	wave height (ft)	6.03 mass density of rocks (lb/ft ³)	165
slope angle (radians) α	0.5805	wave length (ft)	15.01 mass density of water (lb/ft³)	64.36
surf stability parameter (no dimensions) ξ_{m}	1.034804401			
Calculating Surf Stability Paramete	rξ _{mc}			
notional permability (no dimensions) P	0.6			
surf stability parameter (no dimensions) ξ_{mc} 2.48324698 Since ξm is le		n is less than ξmc we will use equation 1		
Calculating Median Stone Size (m ³)	D _{n50}			
relative eroded area (no dimensions) S	4			
number of waves (no dimensions) N _z	7500			
(no dimensions) Δ	1.563704164			
significant wave height (ft) H _s	6.035			
D _{n50} (1)	3.005630942			
median stone size (ft) D _{n50}	1.28406506			

